Metamath Proof Explorer


Theorem mrissmrid

Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrissmrid.1 φAMooreX
mrissmrid.2 N=mrClsA
mrissmrid.3 I=mrIndA
mrissmrid.4 φSI
mrissmrid.5 φTS
Assertion mrissmrid φTI

Proof

Step Hyp Ref Expression
1 mrissmrid.1 φAMooreX
2 mrissmrid.2 N=mrClsA
3 mrissmrid.3 I=mrIndA
4 mrissmrid.4 φSI
5 mrissmrid.5 φTS
6 3 1 4 mrissd φSX
7 5 6 sstrd φTX
8 2 3 1 6 ismri2d φSIxS¬xNSx
9 4 8 mpbid φxS¬xNSx
10 5 sseld φxTxS
11 5 ssdifd φTxSx
12 6 ssdifssd φSxX
13 1 2 11 12 mrcssd φNTxNSx
14 13 ssneld φ¬xNSx¬xNTx
15 10 14 imim12d φxS¬xNSxxT¬xNTx
16 15 ralimdv2 φxS¬xNSxxT¬xNTx
17 9 16 mpd φxT¬xNTx
18 2 3 1 7 17 ismri2dd φTI