Metamath Proof Explorer


Theorem msubty

Description: The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubffval.v V=mVRT
msubffval.r R=mRExT
msubffval.s S=mSubstT
msubffval.e E=mExT
Assertion msubty F:ARAVXE1stSFX=1stX

Proof

Step Hyp Ref Expression
1 msubffval.v V=mVRT
2 msubffval.r R=mRExT
3 msubffval.s S=mSubstT
4 msubffval.e E=mExT
5 eqid mRSubstT=mRSubstT
6 1 2 3 4 5 msubval F:ARAVXESFX=1stXmRSubstTF2ndX
7 fvex 1stXV
8 fvex mRSubstTF2ndXV
9 7 8 op1std SFX=1stXmRSubstTF2ndX1stSFX=1stX
10 6 9 syl F:ARAVXE1stSFX=1stX