Metamath Proof Explorer


Theorem mthmi

Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r R = mStRed T
mthmval.j J = mPPSt T
mthmval.u U = mThm T
Assertion mthmi X J R X = R Y Y U

Proof

Step Hyp Ref Expression
1 mthmval.r R = mStRed T
2 mthmval.j J = mPPSt T
3 mthmval.u U = mThm T
4 fveqeq2 x = X R x = R Y R X = R Y
5 4 rspcev X J R X = R Y x J R x = R Y
6 1 2 3 elmthm Y U x J R x = R Y
7 5 6 sylibr X J R X = R Y Y U