Metamath Proof Explorer


Theorem mthmval

Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r R = mStRed T
mthmval.j J = mPPSt T
mthmval.u U = mThm T
Assertion mthmval U = R -1 R J

Proof

Step Hyp Ref Expression
1 mthmval.r R = mStRed T
2 mthmval.j J = mPPSt T
3 mthmval.u U = mThm T
4 fveq2 t = T mStRed t = mStRed T
5 4 1 eqtr4di t = T mStRed t = R
6 5 cnveqd t = T mStRed t -1 = R -1
7 fveq2 t = T mPPSt t = mPPSt T
8 7 2 eqtr4di t = T mPPSt t = J
9 5 8 imaeq12d t = T mStRed t mPPSt t = R J
10 6 9 imaeq12d t = T mStRed t -1 mStRed t mPPSt t = R -1 R J
11 df-mthm mThm = t V mStRed t -1 mStRed t mPPSt t
12 fvex mStRed t V
13 12 cnvex mStRed t -1 V
14 imaexg mStRed t -1 V mStRed t -1 mStRed t mPPSt t V
15 13 14 ax-mp mStRed t -1 mStRed t mPPSt t V
16 10 11 15 fvmpt3i T V mThm T = R -1 R J
17 0ima R J =
18 17 eqcomi = R J
19 fvprc ¬ T V mThm T =
20 fvprc ¬ T V mStRed T =
21 1 20 syl5eq ¬ T V R =
22 21 cnveqd ¬ T V R -1 = -1
23 cnv0 -1 =
24 22 23 eqtrdi ¬ T V R -1 =
25 24 imaeq1d ¬ T V R -1 R J = R J
26 18 19 25 3eqtr4a ¬ T V mThm T = R -1 R J
27 16 26 pm2.61i mThm T = R -1 R J
28 3 27 eqtri U = R -1 R J