Metamath Proof Explorer


Theorem mulcompr

Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of Gleason p. 124. (Contributed by NM, 19-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcompr A𝑷B=B𝑷A

Proof

Step Hyp Ref Expression
1 mpv A𝑷B𝑷A𝑷B=x|zAyBx=z𝑸y
2 mpv B𝑷A𝑷B𝑷A=x|yBzAx=y𝑸z
3 mulcomnq y𝑸z=z𝑸y
4 3 eqeq2i x=y𝑸zx=z𝑸y
5 4 2rexbii yBzAx=y𝑸zyBzAx=z𝑸y
6 rexcom yBzAx=z𝑸yzAyBx=z𝑸y
7 5 6 bitri yBzAx=y𝑸zzAyBx=z𝑸y
8 7 abbii x|yBzAx=y𝑸z=x|zAyBx=z𝑸y
9 2 8 eqtrdi B𝑷A𝑷B𝑷A=x|zAyBx=z𝑸y
10 9 ancoms A𝑷B𝑷B𝑷A=x|zAyBx=z𝑸y
11 1 10 eqtr4d A𝑷B𝑷A𝑷B=B𝑷A
12 dmmp dom𝑷=𝑷×𝑷
13 12 ndmovcom ¬A𝑷B𝑷A𝑷B=B𝑷A
14 11 13 pm2.61i A𝑷B=B𝑷A