Metamath Proof Explorer


Theorem muldivdir

Description: Distribution of division over addition with a multiplication. (Contributed by AV, 1-Jul-2021)

Ref Expression
Assertion muldivdir ABCC0CA+BC=A+BC

Proof

Step Hyp Ref Expression
1 simp3l ABCC0C
2 simp1 ABCC0A
3 1 2 mulcld ABCC0CA
4 divdir CABCC0CA+BC=CAC+BC
5 3 4 syld3an1 ABCC0CA+BC=CAC+BC
6 3anass ACC0ACC0
7 6 biimpri ACC0ACC0
8 7 3adant2 ABCC0ACC0
9 divcan3 ACC0CAC=A
10 8 9 syl ABCC0CAC=A
11 10 oveq1d ABCC0CAC+BC=A+BC
12 5 11 eqtrd ABCC0CA+BC=A+BC