Metamath Proof Explorer


Theorem muldmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl.1 xφ
muldmmbl.2 _xA
muldmmbl.3 _xB
muldmmbl.4 φSSAlg
muldmmbl.5 φAS
muldmmbl.6 φBS
Assertion muldmmbl φdomxABCDS

Proof

Step Hyp Ref Expression
1 muldmmbl.1 xφ
2 muldmmbl.2 _xA
3 muldmmbl.3 _xB
4 muldmmbl.4 φSSAlg
5 muldmmbl.5 φAS
6 muldmmbl.6 φBS
7 2 3 nfin _xAB
8 eqid xABCD=xABCD
9 ovexd φxABCDV
10 1 7 8 9 dmmptdff φdomxABCD=AB
11 4 5 6 salincld φABS
12 10 11 eqeltrd φdomxABCDS