Metamath Proof Explorer


Theorem mulgcl

Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B=BaseG
mulgnncl.t ·˙=G
Assertion mulgcl GGrpNXBN·˙XB

Proof

Step Hyp Ref Expression
1 mulgnncl.b B=BaseG
2 mulgnncl.t ·˙=G
3 eqid +G=+G
4 id GGrpGGrp
5 ssidd GGrpBB
6 1 3 grpcl GGrpxByBx+GyB
7 eqid 0G=0G
8 1 7 grpidcl GGrp0GB
9 eqid invgG=invgG
10 1 9 grpinvcl GGrpxBinvgGxB
11 1 2 3 4 5 6 7 8 9 10 mulgsubcl GGrpNXBN·˙XB