Description: The map from x to n x for a fixed integer n is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgmhm.b | |
|
mulgmhm.m | |
||
Assertion | mulgghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgmhm.b | |
|
2 | mulgmhm.m | |
|
3 | eqid | |
|
4 | ablgrp | |
|
5 | 4 | adantr | |
6 | 1 2 | mulgcl | |
7 | 4 6 | syl3an1 | |
8 | 7 | 3expa | |
9 | 8 | fmpttd | |
10 | 3anass | |
|
11 | 1 2 3 | mulgdi | |
12 | 10 11 | sylan2br | |
13 | 12 | anassrs | |
14 | 1 3 | grpcl | |
15 | 14 | 3expb | |
16 | 5 15 | sylan | |
17 | oveq2 | |
|
18 | eqid | |
|
19 | ovex | |
|
20 | 17 18 19 | fvmpt | |
21 | 16 20 | syl | |
22 | oveq2 | |
|
23 | ovex | |
|
24 | 22 18 23 | fvmpt | |
25 | oveq2 | |
|
26 | ovex | |
|
27 | 25 18 26 | fvmpt | |
28 | 24 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 13 21 29 | 3eqtr4d | |
31 | 1 1 3 3 5 5 9 30 | isghmd | |