Metamath Proof Explorer


Theorem mulgghm

Description: The map from x to n x for a fixed integer n is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses mulgmhm.b B=BaseG
mulgmhm.m ·˙=G
Assertion mulgghm GAbelMxBM·˙xGGrpHomG

Proof

Step Hyp Ref Expression
1 mulgmhm.b B=BaseG
2 mulgmhm.m ·˙=G
3 eqid +G=+G
4 ablgrp GAbelGGrp
5 4 adantr GAbelMGGrp
6 1 2 mulgcl GGrpMxBM·˙xB
7 4 6 syl3an1 GAbelMxBM·˙xB
8 7 3expa GAbelMxBM·˙xB
9 8 fmpttd GAbelMxBM·˙x:BB
10 3anass MyBzBMyBzB
11 1 2 3 mulgdi GAbelMyBzBM·˙y+Gz=M·˙y+GM·˙z
12 10 11 sylan2br GAbelMyBzBM·˙y+Gz=M·˙y+GM·˙z
13 12 anassrs GAbelMyBzBM·˙y+Gz=M·˙y+GM·˙z
14 1 3 grpcl GGrpyBzBy+GzB
15 14 3expb GGrpyBzBy+GzB
16 5 15 sylan GAbelMyBzBy+GzB
17 oveq2 x=y+GzM·˙x=M·˙y+Gz
18 eqid xBM·˙x=xBM·˙x
19 ovex M·˙y+GzV
20 17 18 19 fvmpt y+GzBxBM·˙xy+Gz=M·˙y+Gz
21 16 20 syl GAbelMyBzBxBM·˙xy+Gz=M·˙y+Gz
22 oveq2 x=yM·˙x=M·˙y
23 ovex M·˙yV
24 22 18 23 fvmpt yBxBM·˙xy=M·˙y
25 oveq2 x=zM·˙x=M·˙z
26 ovex M·˙zV
27 25 18 26 fvmpt zBxBM·˙xz=M·˙z
28 24 27 oveqan12d yBzBxBM·˙xy+GxBM·˙xz=M·˙y+GM·˙z
29 28 adantl GAbelMyBzBxBM·˙xy+GxBM·˙xz=M·˙y+GM·˙z
30 13 21 29 3eqtr4d GAbelMyBzBxBM·˙xy+Gz=xBM·˙xy+GxBM·˙xz
31 1 1 3 3 5 5 9 30 isghmd GAbelMxBM·˙xGGrpHomG