Metamath Proof Explorer


Theorem mulgghm2

Description: The powers of a group element give a homomorphism from ZZ to a group. (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypotheses mulgghm2.m ·˙=R
mulgghm2.f F=nn·˙1˙
mulgghm2.b B=BaseR
Assertion mulgghm2 RGrp1˙BFringGrpHomR

Proof

Step Hyp Ref Expression
1 mulgghm2.m ·˙=R
2 mulgghm2.f F=nn·˙1˙
3 mulgghm2.b B=BaseR
4 simpl RGrp1˙BRGrp
5 zringgrp ringGrp
6 4 5 jctil RGrp1˙BringGrpRGrp
7 3 1 mulgcl RGrpn1˙Bn·˙1˙B
8 7 3expa RGrpn1˙Bn·˙1˙B
9 8 an32s RGrp1˙Bnn·˙1˙B
10 9 2 fmptd RGrp1˙BF:B
11 eqid +R=+R
12 3 1 11 mulgdir RGrpxy1˙Bx+y·˙1˙=x·˙1˙+Ry·˙1˙
13 12 3exp2 RGrpxy1˙Bx+y·˙1˙=x·˙1˙+Ry·˙1˙
14 13 imp42 RGrpxy1˙Bx+y·˙1˙=x·˙1˙+Ry·˙1˙
15 14 an32s RGrp1˙Bxyx+y·˙1˙=x·˙1˙+Ry·˙1˙
16 zaddcl xyx+y
17 16 adantl RGrp1˙Bxyx+y
18 oveq1 n=x+yn·˙1˙=x+y·˙1˙
19 ovex x+y·˙1˙V
20 18 2 19 fvmpt x+yFx+y=x+y·˙1˙
21 17 20 syl RGrp1˙BxyFx+y=x+y·˙1˙
22 oveq1 n=xn·˙1˙=x·˙1˙
23 ovex x·˙1˙V
24 22 2 23 fvmpt xFx=x·˙1˙
25 oveq1 n=yn·˙1˙=y·˙1˙
26 ovex y·˙1˙V
27 25 2 26 fvmpt yFy=y·˙1˙
28 24 27 oveqan12d xyFx+RFy=x·˙1˙+Ry·˙1˙
29 28 adantl RGrp1˙BxyFx+RFy=x·˙1˙+Ry·˙1˙
30 15 21 29 3eqtr4d RGrp1˙BxyFx+y=Fx+RFy
31 30 ralrimivva RGrp1˙BxyFx+y=Fx+RFy
32 10 31 jca RGrp1˙BF:BxyFx+y=Fx+RFy
33 zringbas =Basering
34 zringplusg +=+ring
35 33 3 34 11 isghm FringGrpHomRringGrpRGrpF:BxyFx+y=Fx+RFy
36 6 32 35 sylanbrc RGrp1˙BFringGrpHomR