Description: The powers of a group element give a homomorphism from ZZ to a group. (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgghm2.m | |
|
mulgghm2.f | |
||
mulgghm2.b | |
||
Assertion | mulgghm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgghm2.m | |
|
2 | mulgghm2.f | |
|
3 | mulgghm2.b | |
|
4 | simpl | |
|
5 | zringgrp | |
|
6 | 4 5 | jctil | |
7 | 3 1 | mulgcl | |
8 | 7 | 3expa | |
9 | 8 | an32s | |
10 | 9 2 | fmptd | |
11 | eqid | |
|
12 | 3 1 11 | mulgdir | |
13 | 12 | 3exp2 | |
14 | 13 | imp42 | |
15 | 14 | an32s | |
16 | zaddcl | |
|
17 | 16 | adantl | |
18 | oveq1 | |
|
19 | ovex | |
|
20 | 18 2 19 | fvmpt | |
21 | 17 20 | syl | |
22 | oveq1 | |
|
23 | ovex | |
|
24 | 22 2 23 | fvmpt | |
25 | oveq1 | |
|
26 | ovex | |
|
27 | 25 2 26 | fvmpt | |
28 | 24 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 15 21 29 | 3eqtr4d | |
31 | 30 | ralrimivva | |
32 | 10 31 | jca | |
33 | zringbas | |
|
34 | zringplusg | |
|
35 | 33 3 34 11 | isghm | |
36 | 6 32 35 | sylanbrc | |