Metamath Proof Explorer


Theorem mulgt0con1dlem

Description: Lemma for mulgt0con1d . Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses mulgt0con1dlem.a φA
mulgt0con1dlem.b φB
mulgt0con1dlem.1 φ0<A0<B
mulgt0con1dlem.2 φA=0B=0
Assertion mulgt0con1dlem φB<0A<0

Proof

Step Hyp Ref Expression
1 mulgt0con1dlem.a φA
2 mulgt0con1dlem.b φB
3 mulgt0con1dlem.1 φ0<A0<B
4 mulgt0con1dlem.2 φA=0B=0
5 0red φ0
6 2 5 lttrid φB<0¬B=00<B
7 4 3 orim12d φA=00<AB=00<B
8 7 con3d φ¬B=00<B¬A=00<A
9 1 5 lttrid φA<0¬A=00<A
10 8 9 sylibrd φ¬B=00<BA<0
11 6 10 sylbid φB<0A<0