Metamath Proof Explorer


Theorem mulneg1

Description: Product with negative is negative of product. Theorem I.12 of Apostol p. 18. (Contributed by NM, 14-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion mulneg1 ABAB=AB

Proof

Step Hyp Ref Expression
1 0cn 0
2 subdir 0AB0AB=0BAB
3 1 2 mp3an1 AB0AB=0BAB
4 simpr ABB
5 4 mul02d AB0B=0
6 5 oveq1d AB0BAB=0AB
7 3 6 eqtrd AB0AB=0AB
8 df-neg A=0A
9 8 oveq1i AB=0AB
10 df-neg AB=0AB
11 7 9 10 3eqtr4g ABAB=AB