Metamath Proof Explorer


Theorem mulpqnq

Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995) (Revised by Mario Carneiro, 26-Dec-2014) (New usage is discouraged.)

Ref Expression
Assertion mulpqnq A𝑸B𝑸A𝑸B=/𝑸A𝑝𝑸B

Proof

Step Hyp Ref Expression
1 df-mq 𝑸=/𝑸𝑝𝑸𝑸×𝑸
2 1 fveq1i 𝑸AB=/𝑸𝑝𝑸𝑸×𝑸AB
3 2 a1i A𝑸B𝑸𝑸AB=/𝑸𝑝𝑸𝑸×𝑸AB
4 opelxpi A𝑸B𝑸AB𝑸×𝑸
5 4 fvresd A𝑸B𝑸/𝑸𝑝𝑸𝑸×𝑸AB=/𝑸𝑝𝑸AB
6 df-mpq 𝑝𝑸=x𝑵×𝑵,y𝑵×𝑵1stx𝑵1sty2ndx𝑵2ndy
7 opex 1stx𝑵1sty2ndx𝑵2ndyV
8 6 7 fnmpoi 𝑝𝑸Fn𝑵×𝑵×𝑵×𝑵
9 elpqn A𝑸A𝑵×𝑵
10 elpqn B𝑸B𝑵×𝑵
11 opelxpi A𝑵×𝑵B𝑵×𝑵AB𝑵×𝑵×𝑵×𝑵
12 9 10 11 syl2an A𝑸B𝑸AB𝑵×𝑵×𝑵×𝑵
13 fvco2 𝑝𝑸Fn𝑵×𝑵×𝑵×𝑵AB𝑵×𝑵×𝑵×𝑵/𝑸𝑝𝑸AB=/𝑸𝑝𝑸AB
14 8 12 13 sylancr A𝑸B𝑸/𝑸𝑝𝑸AB=/𝑸𝑝𝑸AB
15 3 5 14 3eqtrd A𝑸B𝑸𝑸AB=/𝑸𝑝𝑸AB
16 df-ov A𝑸B=𝑸AB
17 df-ov A𝑝𝑸B=𝑝𝑸AB
18 17 fveq2i /𝑸A𝑝𝑸B=/𝑸𝑝𝑸AB
19 15 16 18 3eqtr4g A𝑸B𝑸A𝑸B=/𝑸A𝑝𝑸B