| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsproplem.1 |  | 
						
							| 2 |  | mulsproplem4.1 |  | 
						
							| 3 |  | mulsproplem4.2 |  | 
						
							| 4 |  | oldssno |  | 
						
							| 5 | 4 2 | sselid |  | 
						
							| 6 |  | oldssno |  | 
						
							| 7 | 6 3 | sselid |  | 
						
							| 8 |  | 0sno |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | bday0s |  | 
						
							| 11 | 10 10 | oveq12i |  | 
						
							| 12 |  | 0elon |  | 
						
							| 13 |  | naddrid |  | 
						
							| 14 | 12 13 | ax-mp |  | 
						
							| 15 | 11 14 | eqtri |  | 
						
							| 16 | 15 15 | uneq12i |  | 
						
							| 17 |  | un0 |  | 
						
							| 18 | 16 17 | eqtri |  | 
						
							| 19 | 18 18 | uneq12i |  | 
						
							| 20 | 19 17 | eqtri |  | 
						
							| 21 | 20 | uneq2i |  | 
						
							| 22 |  | un0 |  | 
						
							| 23 | 21 22 | eqtri |  | 
						
							| 24 |  | oldbdayim |  | 
						
							| 25 | 2 24 | syl |  | 
						
							| 26 |  | oldbdayim |  | 
						
							| 27 | 3 26 | syl |  | 
						
							| 28 |  | bdayelon |  | 
						
							| 29 |  | bdayelon |  | 
						
							| 30 |  | naddel12 |  | 
						
							| 31 | 28 29 30 | mp2an |  | 
						
							| 32 | 25 27 31 | syl2anc |  | 
						
							| 33 |  | elun1 |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 | 23 34 | eqeltrid |  | 
						
							| 36 | 1 5 7 9 9 9 9 35 | mulsproplem1 |  | 
						
							| 37 | 36 | simpld |  |