Metamath Proof Explorer


Theorem mvlrmuld

Description: Move the right term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlrmuld.1 φA
mvlrmuld.2 φB
mvlrmuld.3 φB0
mvlrmuld.4 φAB=C
Assertion mvlrmuld φA=CB

Proof

Step Hyp Ref Expression
1 mvlrmuld.1 φA
2 mvlrmuld.2 φB
3 mvlrmuld.3 φB0
4 mvlrmuld.4 φAB=C
5 1 2 3 divcan4d φABB=A
6 4 oveq1d φABB=CB
7 5 6 eqtr3d φA=CB