Metamath Proof Explorer


Theorem mzpf

Description: A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzpf FmzPolyVF:V

Proof

Step Hyp Ref Expression
1 elfvex FmzPolyVVV
2 mzpval VVmzPolyV=mzPolyCldV
3 mzpclall VVVmzPolyCldV
4 intss1 VmzPolyCldVmzPolyCldVV
5 3 4 syl VVmzPolyCldVV
6 2 5 eqsstrd VVmzPolyVV
7 1 6 syl FmzPolyVmzPolyVV
8 7 sselda FmzPolyVFmzPolyVFV
9 8 anidms FmzPolyVFV
10 zex V
11 ovex VV
12 10 11 elmap FVF:V
13 9 12 sylib FmzPolyVF:V