Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mzpclall | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | oveq2d | |
3 | fveq2 | |
|
4 | 2 3 | eleq12d | |
5 | ssid | |
|
6 | ovex | |
|
7 | zex | |
|
8 | 6 7 | constmap | |
9 | 8 | rgen | |
10 | vex | |
|
11 | 7 10 | elmap | |
12 | ffvelcdm | |
|
13 | 11 12 | sylanb | |
14 | 13 | ancoms | |
15 | 14 | fmpttd | |
16 | 7 6 | elmap | |
17 | 15 16 | sylibr | |
18 | 17 | rgen | |
19 | 9 18 | pm3.2i | |
20 | zaddcl | |
|
21 | 20 | adantl | |
22 | simpl | |
|
23 | simpr | |
|
24 | ovexd | |
|
25 | inidm | |
|
26 | 21 22 23 24 24 25 | off | |
27 | zmulcl | |
|
28 | 27 | adantl | |
29 | 28 22 23 24 24 25 | off | |
30 | 26 29 | jca | |
31 | 7 6 | elmap | |
32 | 7 6 | elmap | |
33 | 31 32 | anbi12i | |
34 | 7 6 | elmap | |
35 | 7 6 | elmap | |
36 | 34 35 | anbi12i | |
37 | 30 33 36 | 3imtr4i | |
38 | 37 | rgen2 | |
39 | 19 38 | pm3.2i | |
40 | elmzpcl | |
|
41 | 10 40 | ax-mp | |
42 | 5 39 41 | mpbir2an | |
43 | 4 42 | vtoclg | |