Metamath Proof Explorer


Theorem mzpclall

Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpclall VVVmzPolyCldV

Proof

Step Hyp Ref Expression
1 oveq2 v=Vv=V
2 1 oveq2d v=Vv=V
3 fveq2 v=VmzPolyCldv=mzPolyCldV
4 2 3 eleq12d v=VvmzPolyCldvVmzPolyCldV
5 ssid vv
6 ovex vV
7 zex V
8 6 7 constmap fv×fv
9 8 rgen fv×fv
10 vex vV
11 7 10 elmap gvg:v
12 ffvelcdm g:vfvgf
13 11 12 sylanb gvfvgf
14 13 ancoms fvgvgf
15 14 fmpttd fvgvgf:v
16 7 6 elmap gvgfvgvgf:v
17 15 16 sylibr fvgvgfv
18 17 rgen fvgvgfv
19 9 18 pm3.2i fv×fvfvgvgfv
20 zaddcl aba+b
21 20 adantl f:vg:vaba+b
22 simpl f:vg:vf:v
23 simpr f:vg:vg:v
24 ovexd f:vg:vvV
25 inidm vv=v
26 21 22 23 24 24 25 off f:vg:vf+fg:v
27 zmulcl abab
28 27 adantl f:vg:vabab
29 28 22 23 24 24 25 off f:vg:vf×fg:v
30 26 29 jca f:vg:vf+fg:vf×fg:v
31 7 6 elmap fvf:v
32 7 6 elmap gvg:v
33 31 32 anbi12i fvgvf:vg:v
34 7 6 elmap f+fgvf+fg:v
35 7 6 elmap f×fgvf×fg:v
36 34 35 anbi12i f+fgvf×fgvf+fg:vf×fg:v
37 30 33 36 3imtr4i fvgvf+fgvf×fgv
38 37 rgen2 fvgvf+fgvf×fgv
39 19 38 pm3.2i fv×fvfvgvgfvfvgvf+fgvf×fgv
40 elmzpcl vVvmzPolyCldvvvfv×fvfvgvgfvfvgvf+fgvf×fgv
41 10 40 ax-mp vmzPolyCldvvvfv×fvfvgvgfvfvgvf+fgvf×fgv
42 5 39 41 mpbir2an vmzPolyCldv
43 4 42 vtoclg VVVmzPolyCldV