Metamath Proof Explorer


Theorem n0elqs

Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019)

Ref Expression
Assertion n0elqs ¬A/RAdomR

Proof

Step Hyp Ref Expression
1 ecdmn0 xdomRxR
2 1 ralbii xAxdomRxAxR
3 dfss3 AdomRxAxdomR
4 nne ¬xRxR=
5 4 rexbii xA¬xRxAxR=
6 5 notbii ¬xA¬xR¬xAxR=
7 dfral2 xAxR¬xA¬xR
8 0ex V
9 8 elqs A/RxA=xR
10 eqcom =xRxR=
11 10 rexbii xA=xRxAxR=
12 9 11 bitri A/RxAxR=
13 12 notbii ¬A/R¬xAxR=
14 6 7 13 3bitr4ri ¬A/RxAxR
15 2 3 14 3bitr4ri ¬A/RAdomR