| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
eleq1d |
|
| 3 |
2
|
imbi2d |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
eleq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
n0sno |
|
| 14 |
|
muls01 |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
0n0s |
|
| 17 |
15 16
|
eqeltrdi |
|
| 18 |
13
|
ad2antrr |
|
| 19 |
|
n0sno |
|
| 20 |
19
|
ad2antlr |
|
| 21 |
|
1sno |
|
| 22 |
21
|
a1i |
|
| 23 |
18 20 22
|
addsdid |
|
| 24 |
13
|
mulsridd |
|
| 25 |
24
|
oveq2d |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
23 26
|
eqtrd |
|
| 28 |
|
n0addscl |
|
| 29 |
28
|
ancoms |
|
| 30 |
29
|
adantlr |
|
| 31 |
27 30
|
eqeltrd |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
expcom |
|
| 34 |
33
|
a2d |
|
| 35 |
3 6 9 12 17 34
|
n0sind |
|
| 36 |
35
|
impcom |
|