Metamath Proof Explorer


Theorem naryfvalelfv

Description: The value of an n-ary (endo)function on a set X is an element of X . (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryfvalelfv Could not format assertion : No typesetting found for |- ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> ( F ` A ) e. X ) with typecode |-

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 1 naryrcl Could not format ( F e. ( N -aryF X ) -> ( N e. NN0 /\ X e. _V ) ) : No typesetting found for |- ( F e. ( N -aryF X ) -> ( N e. NN0 /\ X e. _V ) ) with typecode |-
3 1 naryfvalel Could not format ( ( N e. NN0 /\ X e. _V ) -> ( F e. ( N -aryF X ) <-> F : ( X ^m I ) --> X ) ) : No typesetting found for |- ( ( N e. NN0 /\ X e. _V ) -> ( F e. ( N -aryF X ) <-> F : ( X ^m I ) --> X ) ) with typecode |-
4 3 biimpd Could not format ( ( N e. NN0 /\ X e. _V ) -> ( F e. ( N -aryF X ) -> F : ( X ^m I ) --> X ) ) : No typesetting found for |- ( ( N e. NN0 /\ X e. _V ) -> ( F e. ( N -aryF X ) -> F : ( X ^m I ) --> X ) ) with typecode |-
5 2 4 mpcom Could not format ( F e. ( N -aryF X ) -> F : ( X ^m I ) --> X ) : No typesetting found for |- ( F e. ( N -aryF X ) -> F : ( X ^m I ) --> X ) with typecode |-
6 5 adantr Could not format ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> F : ( X ^m I ) --> X ) : No typesetting found for |- ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> F : ( X ^m I ) --> X ) with typecode |-
7 simpr N 0 X V X V
8 1 ovexi I V
9 8 a1i N 0 X V I V
10 7 9 elmapd N 0 X V A X I A : I X
11 10 biimpar N 0 X V A : I X A X I
12 2 11 sylan Could not format ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> A e. ( X ^m I ) ) : No typesetting found for |- ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> A e. ( X ^m I ) ) with typecode |-
13 6 12 ffvelrnd Could not format ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> ( F ` A ) e. X ) : No typesetting found for |- ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> ( F ` A ) e. X ) with typecode |-