| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natoppf.o |
|
| 2 |
|
natoppf.p |
|
| 3 |
|
natoppf.n |
|
| 4 |
|
natoppf.m |
|
| 5 |
|
natoppfb.k |
Could not format ( ph -> K = ( oppFunc ` F ) ) : No typesetting found for |- ( ph -> K = ( oppFunc ` F ) ) with typecode |- |
| 6 |
|
natoppfb.l |
Could not format ( ph -> L = ( oppFunc ` G ) ) : No typesetting found for |- ( ph -> L = ( oppFunc ` G ) ) with typecode |- |
| 7 |
|
natoppfb.c |
|
| 8 |
|
natoppfb.d |
|
| 9 |
5
|
adantr |
Could not format ( ( ph /\ x e. ( F N G ) ) -> K = ( oppFunc ` F ) ) : No typesetting found for |- ( ( ph /\ x e. ( F N G ) ) -> K = ( oppFunc ` F ) ) with typecode |- |
| 10 |
6
|
adantr |
Could not format ( ( ph /\ x e. ( F N G ) ) -> L = ( oppFunc ` G ) ) : No typesetting found for |- ( ( ph /\ x e. ( F N G ) ) -> L = ( oppFunc ` G ) ) with typecode |- |
| 11 |
|
simpr |
|
| 12 |
1 2 3 4 9 10 11
|
natoppf2 |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
6
|
adantr |
Could not format ( ( ph /\ x e. ( L M K ) ) -> L = ( oppFunc ` G ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> L = ( oppFunc ` G ) ) with typecode |- |
| 17 |
16
|
fveq2d |
Could not format ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` L ) = ( oppFunc ` ( oppFunc ` G ) ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` L ) = ( oppFunc ` ( oppFunc ` G ) ) ) with typecode |- |
| 18 |
4
|
natrcl |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
simpld |
|
| 21 |
16 20
|
eqeltrrd |
Could not format ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` G ) e. ( O Func P ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` G ) e. ( O Func P ) ) with typecode |- |
| 22 |
|
relfunc |
|
| 23 |
|
eqid |
Could not format ( oppFunc ` G ) = ( oppFunc ` G ) : No typesetting found for |- ( oppFunc ` G ) = ( oppFunc ` G ) with typecode |- |
| 24 |
21 22 23
|
2oppf |
Could not format ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` ( oppFunc ` G ) ) = G ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` ( oppFunc ` G ) ) = G ) with typecode |- |
| 25 |
17 24
|
eqtr2d |
Could not format ( ( ph /\ x e. ( L M K ) ) -> G = ( oppFunc ` L ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> G = ( oppFunc ` L ) ) with typecode |- |
| 26 |
5
|
adantr |
Could not format ( ( ph /\ x e. ( L M K ) ) -> K = ( oppFunc ` F ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> K = ( oppFunc ` F ) ) with typecode |- |
| 27 |
26
|
fveq2d |
Could not format ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` K ) = ( oppFunc ` ( oppFunc ` F ) ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` K ) = ( oppFunc ` ( oppFunc ` F ) ) ) with typecode |- |
| 28 |
19
|
simprd |
|
| 29 |
26 28
|
eqeltrrd |
Could not format ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` F ) e. ( O Func P ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |- |
| 30 |
|
eqid |
Could not format ( oppFunc ` F ) = ( oppFunc ` F ) : No typesetting found for |- ( oppFunc ` F ) = ( oppFunc ` F ) with typecode |- |
| 31 |
29 22 30
|
2oppf |
Could not format ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` ( oppFunc ` F ) ) = F ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` ( oppFunc ` F ) ) = F ) with typecode |- |
| 32 |
27 31
|
eqtr2d |
Could not format ( ( ph /\ x e. ( L M K ) ) -> F = ( oppFunc ` K ) ) : No typesetting found for |- ( ( ph /\ x e. ( L M K ) ) -> F = ( oppFunc ` K ) ) with typecode |- |
| 33 |
|
simpr |
|
| 34 |
13 14 4 15 25 32 33
|
natoppf2 |
|
| 35 |
1
|
2oppchomf |
|
| 36 |
35
|
a1i |
|
| 37 |
1
|
2oppccomf |
|
| 38 |
37
|
a1i |
|
| 39 |
2
|
2oppchomf |
|
| 40 |
39
|
a1i |
|
| 41 |
2
|
2oppccomf |
|
| 42 |
41
|
a1i |
|
| 43 |
7
|
adantr |
|
| 44 |
8
|
adantr |
|
| 45 |
1 2 43 44 29
|
funcoppc5 |
|
| 46 |
45
|
func1st2nd |
|
| 47 |
46
|
funcrcl2 |
|
| 48 |
1
|
oppccat |
|
| 49 |
13
|
oppccat |
|
| 50 |
47 48 49
|
3syl |
|
| 51 |
46
|
funcrcl3 |
|
| 52 |
2
|
oppccat |
|
| 53 |
14
|
oppccat |
|
| 54 |
51 52 53
|
3syl |
|
| 55 |
36 38 40 42 47 50 51 54
|
natpropd |
|
| 56 |
3 55
|
eqtrid |
|
| 57 |
56
|
oveqd |
|
| 58 |
34 57
|
eleqtrrd |
|
| 59 |
12 58
|
impbida |
|
| 60 |
59
|
eqrdv |
|