Metamath Proof Explorer


Theorem ncvsm1

Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V = Base W
ncvsprp.n N = norm W
ncvsprp.s · ˙ = W
Assertion ncvsm1 W NrmVec ℂVec A V N -1 · ˙ A = N A

Proof

Step Hyp Ref Expression
1 ncvsprp.v V = Base W
2 ncvsprp.n N = norm W
3 ncvsprp.s · ˙ = W
4 simpl W NrmVec ℂVec A V W NrmVec ℂVec
5 elin W NrmVec ℂVec W NrmVec W ℂVec
6 id W ℂVec W ℂVec
7 6 cvsclm W ℂVec W CMod
8 eqid Scalar W = Scalar W
9 eqid Base Scalar W = Base Scalar W
10 8 9 clmneg1 W CMod 1 Base Scalar W
11 7 10 syl W ℂVec 1 Base Scalar W
12 5 11 simplbiim W NrmVec ℂVec 1 Base Scalar W
13 12 adantr W NrmVec ℂVec A V 1 Base Scalar W
14 simpr W NrmVec ℂVec A V A V
15 1 2 3 8 9 ncvsprp W NrmVec ℂVec 1 Base Scalar W A V N -1 · ˙ A = 1 N A
16 4 13 14 15 syl3anc W NrmVec ℂVec A V N -1 · ˙ A = 1 N A
17 ax-1cn 1
18 17 absnegi 1 = 1
19 abs1 1 = 1
20 18 19 eqtri 1 = 1
21 20 oveq1i 1 N A = 1 N A
22 nvcnlm W NrmVec W NrmMod
23 nlmngp W NrmMod W NrmGrp
24 22 23 syl W NrmVec W NrmGrp
25 24 adantr W NrmVec W ℂVec W NrmGrp
26 5 25 sylbi W NrmVec ℂVec W NrmGrp
27 1 2 nmcl W NrmGrp A V N A
28 26 27 sylan W NrmVec ℂVec A V N A
29 28 recnd W NrmVec ℂVec A V N A
30 29 mulid2d W NrmVec ℂVec A V 1 N A = N A
31 21 30 syl5eq W NrmVec ℂVec A V 1 N A = N A
32 16 31 eqtrd W NrmVec ℂVec A V N -1 · ˙ A = N A