Metamath Proof Explorer


Theorem ndfatafv2nrn

Description: The alternate function value at a class A at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndfatafv2nrn ¬FdefAtAF''''AranF

Proof

Step Hyp Ref Expression
1 ndfatafv2 ¬FdefAtAF''''A=𝒫ranF
2 pwuninel ¬𝒫ranFranF
3 df-nel F''''AranF¬F''''AranF
4 eleq1 F''''A=𝒫ranFF''''AranF𝒫ranFranF
5 4 notbid F''''A=𝒫ranF¬F''''AranF¬𝒫ranFranF
6 3 5 bitrid F''''A=𝒫ranFF''''AranF¬𝒫ranFranF
7 2 6 mpbiri F''''A=𝒫ranFF''''AranF
8 1 7 syl ¬FdefAtAF''''AranF