Description: Any operation is distributive outside its domain. In contrast to ndmovdistr where it is required that the operation's domain doesn't contain the empty set ( -. (/) e. S ), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ndmaov.1 | |
|
ndmaov.6 | |
||
Assertion | ndmaovdistr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmaov.1 | |
|
2 | ndmaov.6 | |
|
3 | 2 | eleq2i | |
4 | opelxp | |
|
5 | 3 4 | bitri | |
6 | aovvdm | |
|
7 | 1 | eleq2i | |
8 | opelxp | |
|
9 | 7 8 | bitri | |
10 | 3anass | |
|
11 | 10 | simplbi2com | |
12 | 9 11 | sylbi | |
13 | 6 12 | syl | |
14 | 13 | impcom | |
15 | 5 14 | sylbi | |
16 | ndmaov | |
|
17 | 15 16 | nsyl5 | |
18 | 1 | eleq2i | |
19 | opelxp | |
|
20 | 18 19 | bitri | |
21 | aovvdm | |
|
22 | 2 | eleq2i | |
23 | opelxp | |
|
24 | 22 23 | bitri | |
25 | 2 | eleq2i | |
26 | opelxp | |
|
27 | 25 26 | bitri | |
28 | simpll | |
|
29 | simprr | |
|
30 | simplr | |
|
31 | 28 29 30 | 3jca | |
32 | 31 | ex | |
33 | 27 32 | sylbi | |
34 | aovvdm | |
|
35 | 33 34 | syl11 | |
36 | 24 35 | sylbi | |
37 | 21 36 | syl | |
38 | 37 | imp | |
39 | 20 38 | sylbi | |
40 | ndmaov | |
|
41 | 39 40 | nsyl5 | |
42 | 17 41 | eqtr4d | |