Metamath Proof Explorer


Theorem ndmaovdistr

Description: Any operation is distributive outside its domain. In contrast to ndmovdistr where it is required that the operation's domain doesn't contain the empty set ( -. (/) e. S ), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses ndmaov.1 domF=S×S
ndmaov.6 domG=S×S
Assertion ndmaovdistr ¬ASBSCSAGBFC=AGBFAGC

Proof

Step Hyp Ref Expression
1 ndmaov.1 domF=S×S
2 ndmaov.6 domG=S×S
3 2 eleq2i ABFCdomGABFCS×S
4 opelxp ABFCS×SASBFCS
5 3 4 bitri ABFCdomGASBFCS
6 aovvdm BFCSBCdomF
7 1 eleq2i BCdomFBCS×S
8 opelxp BCS×SBSCS
9 7 8 bitri BCdomFBSCS
10 3anass ASBSCSASBSCS
11 10 simplbi2com BSCSASASBSCS
12 9 11 sylbi BCdomFASASBSCS
13 6 12 syl BFCSASASBSCS
14 13 impcom ASBFCSASBSCS
15 5 14 sylbi ABFCdomGASBSCS
16 ndmaov ¬ABFCdomGAGBFC=V
17 15 16 nsyl5 ¬ASBSCSAGBFC=V
18 1 eleq2i AGBAGCdomFAGBAGCS×S
19 opelxp AGBAGCS×SAGBSAGCS
20 18 19 bitri AGBAGCdomFAGBSAGCS
21 aovvdm AGBSABdomG
22 2 eleq2i ABdomGABS×S
23 opelxp ABS×SASBS
24 22 23 bitri ABdomGASBS
25 2 eleq2i ACdomGACS×S
26 opelxp ACS×SASCS
27 25 26 bitri ACdomGASCS
28 simpll ASCSASBSAS
29 simprr ASCSASBSBS
30 simplr ASCSASBSCS
31 28 29 30 3jca ASCSASBSASBSCS
32 31 ex ASCSASBSASBSCS
33 27 32 sylbi ACdomGASBSASBSCS
34 aovvdm AGCSACdomG
35 33 34 syl11 ASBSAGCSASBSCS
36 24 35 sylbi ABdomGAGCSASBSCS
37 21 36 syl AGBSAGCSASBSCS
38 37 imp AGBSAGCSASBSCS
39 20 38 sylbi AGBAGCdomFASBSCS
40 ndmaov ¬AGBAGCdomFAGBFAGC=V
41 39 40 nsyl5 ¬ASBSCSAGBFAGC=V
42 17 41 eqtr4d ¬ASBSCSAGBFC=AGBFAGC