Metamath Proof Explorer


Theorem neiflim

Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion neiflim JTopOnXAXAJfLimneiJA

Proof

Step Hyp Ref Expression
1 ssid neiJAneiJA
2 1 jctr AXAXneiJAneiJA
3 2 adantl JTopOnXAXAXneiJAneiJA
4 simpl JTopOnXAXJTopOnX
5 snssi AXAX
6 5 adantl JTopOnXAXAX
7 snnzg AXA
8 7 adantl JTopOnXAXA
9 neifil JTopOnXAXAneiJAFilX
10 4 6 8 9 syl3anc JTopOnXAXneiJAFilX
11 elflim JTopOnXneiJAFilXAJfLimneiJAAXneiJAneiJA
12 10 11 syldan JTopOnXAXAJfLimneiJAAXneiJAneiJA
13 3 12 mpbird JTopOnXAXAJfLimneiJA