Metamath Proof Explorer


Theorem nfchnd

Description: Bound-variable hypothesis builder for chain collection constructor. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses nfchnd.1 φ _ x < ˙
nfchnd.2 φ _ x A
Assertion nfchnd φ _ x Chain A < ˙

Proof

Step Hyp Ref Expression
1 nfchnd.1 φ _ x < ˙
2 nfchnd.2 φ _ x A
3 df-chn Chain A < ˙ = z Word A | n dom z 0 z n 1 < ˙ z n
4 df-rab z Word A | n dom z 0 z n 1 < ˙ z n = z | z Word A n dom z 0 z n 1 < ˙ z n
5 nfv z φ
6 df-word Word A = z | n 0 z : 0 ..^ n A
7 nfv n φ
8 nfcvd φ _ x 0
9 df-f z : 0 ..^ n A z Fn 0 ..^ n ran z A
10 df-fn z Fn 0 ..^ n Fun z dom z = 0 ..^ n
11 df-fun Fun z Rel z z z -1 I
12 df-rel Rel z z V × V
13 nfcv _ n z
14 nfcv _ n V × V
15 13 14 dfss3f z V × V n z n V × V
16 nfcv _ x z
17 16 a1i φ _ x z
18 nfcvd φ _ x V × V
19 18 nfcrd φ x n V × V
20 7 17 19 nfraldw φ x n z n V × V
21 15 20 nfxfrd φ x z V × V
22 12 21 nfxfrd φ x Rel z
23 nfvd φ x z z -1 I
24 22 23 nfand φ x Rel z z z -1 I
25 11 24 nfxfrd φ x Fun z
26 nfvd φ x dom z = 0 ..^ n
27 25 26 nfand φ x Fun z dom z = 0 ..^ n
28 10 27 nfxfrd φ x z Fn 0 ..^ n
29 nfcv _ n ran z
30 nfcv _ n A
31 29 30 dfss3f ran z A n ran z n A
32 nfcvd φ _ x ran z
33 2 nfcrd φ x n A
34 7 32 33 nfraldw φ x n ran z n A
35 31 34 nfxfrd φ x ran z A
36 28 35 nfand φ x z Fn 0 ..^ n ran z A
37 9 36 nfxfrd φ x z : 0 ..^ n A
38 7 8 37 nfrexdw φ x n 0 z : 0 ..^ n A
39 5 38 nfabdw φ _ x z | n 0 z : 0 ..^ n A
40 6 39 nfcxfrd φ _ x Word A
41 nfcr _ x Word A x z Word A
42 40 41 syl φ x z Word A
43 nfcvd φ _ x dom z 0
44 nfcvd φ _ x z n 1
45 nfcvd φ _ x z n
46 44 1 45 nfbrd φ x z n 1 < ˙ z n
47 7 43 46 nfraldw φ x n dom z 0 z n 1 < ˙ z n
48 42 47 nfand φ x z Word A n dom z 0 z n 1 < ˙ z n
49 5 48 nfabdw φ _ x z | z Word A n dom z 0 z n 1 < ˙ z n
50 4 49 nfcxfrd φ _ x z Word A | n dom z 0 z n 1 < ˙ z n
51 3 50 nfcxfrd φ _ x Chain A < ˙