| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfchnd.1 |
|- ( ph -> F/_ x .< ) |
| 2 |
|
nfchnd.2 |
|- ( ph -> F/_ x A ) |
| 3 |
|
df-chn |
|- ( .< Chain A ) = { z e. Word A | A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) } |
| 4 |
|
df-rab |
|- { z e. Word A | A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) } = { z | ( z e. Word A /\ A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) ) } |
| 5 |
|
nfv |
|- F/ z ph |
| 6 |
|
df-word |
|- Word A = { z | E. n e. NN0 z : ( 0 ..^ n ) --> A } |
| 7 |
|
nfv |
|- F/ n ph |
| 8 |
|
nfcvd |
|- ( ph -> F/_ x NN0 ) |
| 9 |
|
df-f |
|- ( z : ( 0 ..^ n ) --> A <-> ( z Fn ( 0 ..^ n ) /\ ran z C_ A ) ) |
| 10 |
|
df-fn |
|- ( z Fn ( 0 ..^ n ) <-> ( Fun z /\ dom z = ( 0 ..^ n ) ) ) |
| 11 |
|
df-fun |
|- ( Fun z <-> ( Rel z /\ ( z o. `' z ) C_ _I ) ) |
| 12 |
|
df-rel |
|- ( Rel z <-> z C_ ( _V X. _V ) ) |
| 13 |
|
nfcv |
|- F/_ n z |
| 14 |
|
nfcv |
|- F/_ n ( _V X. _V ) |
| 15 |
13 14
|
dfss3f |
|- ( z C_ ( _V X. _V ) <-> A. n e. z n e. ( _V X. _V ) ) |
| 16 |
|
nfcv |
|- F/_ x z |
| 17 |
16
|
a1i |
|- ( ph -> F/_ x z ) |
| 18 |
|
nfcvd |
|- ( ph -> F/_ x ( _V X. _V ) ) |
| 19 |
18
|
nfcrd |
|- ( ph -> F/ x n e. ( _V X. _V ) ) |
| 20 |
7 17 19
|
nfraldw |
|- ( ph -> F/ x A. n e. z n e. ( _V X. _V ) ) |
| 21 |
15 20
|
nfxfrd |
|- ( ph -> F/ x z C_ ( _V X. _V ) ) |
| 22 |
12 21
|
nfxfrd |
|- ( ph -> F/ x Rel z ) |
| 23 |
|
nfvd |
|- ( ph -> F/ x ( z o. `' z ) C_ _I ) |
| 24 |
22 23
|
nfand |
|- ( ph -> F/ x ( Rel z /\ ( z o. `' z ) C_ _I ) ) |
| 25 |
11 24
|
nfxfrd |
|- ( ph -> F/ x Fun z ) |
| 26 |
|
nfvd |
|- ( ph -> F/ x dom z = ( 0 ..^ n ) ) |
| 27 |
25 26
|
nfand |
|- ( ph -> F/ x ( Fun z /\ dom z = ( 0 ..^ n ) ) ) |
| 28 |
10 27
|
nfxfrd |
|- ( ph -> F/ x z Fn ( 0 ..^ n ) ) |
| 29 |
|
nfcv |
|- F/_ n ran z |
| 30 |
|
nfcv |
|- F/_ n A |
| 31 |
29 30
|
dfss3f |
|- ( ran z C_ A <-> A. n e. ran z n e. A ) |
| 32 |
|
nfcvd |
|- ( ph -> F/_ x ran z ) |
| 33 |
2
|
nfcrd |
|- ( ph -> F/ x n e. A ) |
| 34 |
7 32 33
|
nfraldw |
|- ( ph -> F/ x A. n e. ran z n e. A ) |
| 35 |
31 34
|
nfxfrd |
|- ( ph -> F/ x ran z C_ A ) |
| 36 |
28 35
|
nfand |
|- ( ph -> F/ x ( z Fn ( 0 ..^ n ) /\ ran z C_ A ) ) |
| 37 |
9 36
|
nfxfrd |
|- ( ph -> F/ x z : ( 0 ..^ n ) --> A ) |
| 38 |
7 8 37
|
nfrexdw |
|- ( ph -> F/ x E. n e. NN0 z : ( 0 ..^ n ) --> A ) |
| 39 |
5 38
|
nfabdw |
|- ( ph -> F/_ x { z | E. n e. NN0 z : ( 0 ..^ n ) --> A } ) |
| 40 |
6 39
|
nfcxfrd |
|- ( ph -> F/_ x Word A ) |
| 41 |
|
nfcr |
|- ( F/_ x Word A -> F/ x z e. Word A ) |
| 42 |
40 41
|
syl |
|- ( ph -> F/ x z e. Word A ) |
| 43 |
|
nfcvd |
|- ( ph -> F/_ x ( dom z \ { 0 } ) ) |
| 44 |
|
nfcvd |
|- ( ph -> F/_ x ( z ` ( n - 1 ) ) ) |
| 45 |
|
nfcvd |
|- ( ph -> F/_ x ( z ` n ) ) |
| 46 |
44 1 45
|
nfbrd |
|- ( ph -> F/ x ( z ` ( n - 1 ) ) .< ( z ` n ) ) |
| 47 |
7 43 46
|
nfraldw |
|- ( ph -> F/ x A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) ) |
| 48 |
42 47
|
nfand |
|- ( ph -> F/ x ( z e. Word A /\ A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) ) ) |
| 49 |
5 48
|
nfabdw |
|- ( ph -> F/_ x { z | ( z e. Word A /\ A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) ) } ) |
| 50 |
4 49
|
nfcxfrd |
|- ( ph -> F/_ x { z e. Word A | A. n e. ( dom z \ { 0 } ) ( z ` ( n - 1 ) ) .< ( z ` n ) } ) |
| 51 |
3 50
|
nfcxfrd |
|- ( ph -> F/_ x ( .< Chain A ) ) |