| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfchnd.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 < ) |
| 2 |
|
nfchnd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
| 3 |
|
df-chn |
⊢ ( < Chain 𝐴 ) = { 𝑧 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) } |
| 4 |
|
df-rab |
⊢ { 𝑧 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) } = { 𝑧 ∣ ( 𝑧 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) ) } |
| 5 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 6 |
|
df-word |
⊢ Word 𝐴 = { 𝑧 ∣ ∃ 𝑛 ∈ ℕ0 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 } |
| 7 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 8 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ℕ0 ) |
| 9 |
|
df-f |
⊢ ( 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 ↔ ( 𝑧 Fn ( 0 ..^ 𝑛 ) ∧ ran 𝑧 ⊆ 𝐴 ) ) |
| 10 |
|
df-fn |
⊢ ( 𝑧 Fn ( 0 ..^ 𝑛 ) ↔ ( Fun 𝑧 ∧ dom 𝑧 = ( 0 ..^ 𝑛 ) ) ) |
| 11 |
|
df-fun |
⊢ ( Fun 𝑧 ↔ ( Rel 𝑧 ∧ ( 𝑧 ∘ ◡ 𝑧 ) ⊆ I ) ) |
| 12 |
|
df-rel |
⊢ ( Rel 𝑧 ↔ 𝑧 ⊆ ( V × V ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑧 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑛 ( V × V ) |
| 15 |
13 14
|
dfss3f |
⊢ ( 𝑧 ⊆ ( V × V ) ↔ ∀ 𝑛 ∈ 𝑧 𝑛 ∈ ( V × V ) ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ) |
| 18 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( V × V ) ) |
| 19 |
18
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑛 ∈ ( V × V ) ) |
| 20 |
7 17 19
|
nfraldw |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑛 ∈ 𝑧 𝑛 ∈ ( V × V ) ) |
| 21 |
15 20
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ⊆ ( V × V ) ) |
| 22 |
12 21
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 Rel 𝑧 ) |
| 23 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ∘ ◡ 𝑧 ) ⊆ I ) |
| 24 |
22 23
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( Rel 𝑧 ∧ ( 𝑧 ∘ ◡ 𝑧 ) ⊆ I ) ) |
| 25 |
11 24
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 Fun 𝑧 ) |
| 26 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑥 dom 𝑧 = ( 0 ..^ 𝑛 ) ) |
| 27 |
25 26
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( Fun 𝑧 ∧ dom 𝑧 = ( 0 ..^ 𝑛 ) ) ) |
| 28 |
10 27
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 Fn ( 0 ..^ 𝑛 ) ) |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑛 ran 𝑧 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐴 |
| 31 |
29 30
|
dfss3f |
⊢ ( ran 𝑧 ⊆ 𝐴 ↔ ∀ 𝑛 ∈ ran 𝑧 𝑛 ∈ 𝐴 ) |
| 32 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ran 𝑧 ) |
| 33 |
2
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑛 ∈ 𝐴 ) |
| 34 |
7 32 33
|
nfraldw |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑛 ∈ ran 𝑧 𝑛 ∈ 𝐴 ) |
| 35 |
31 34
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ran 𝑧 ⊆ 𝐴 ) |
| 36 |
28 35
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 Fn ( 0 ..^ 𝑛 ) ∧ ran 𝑧 ⊆ 𝐴 ) ) |
| 37 |
9 36
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 ) |
| 38 |
7 8 37
|
nfrexdw |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑛 ∈ ℕ0 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 ) |
| 39 |
5 38
|
nfabdw |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ ∃ 𝑛 ∈ ℕ0 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 } ) |
| 40 |
6 39
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 Word 𝐴 ) |
| 41 |
|
nfcr |
⊢ ( Ⅎ 𝑥 Word 𝐴 → Ⅎ 𝑥 𝑧 ∈ Word 𝐴 ) |
| 42 |
40 41
|
syl |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ Word 𝐴 ) |
| 43 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( dom 𝑧 ∖ { 0 } ) ) |
| 44 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ‘ ( 𝑛 − 1 ) ) ) |
| 45 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ‘ 𝑛 ) ) |
| 46 |
44 1 45
|
nfbrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) ) |
| 47 |
7 43 46
|
nfraldw |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) ) |
| 48 |
42 47
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) ) ) |
| 49 |
5 48
|
nfabdw |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ ( 𝑧 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) ) } ) |
| 50 |
4 49
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧 ‘ 𝑛 ) } ) |
| 51 |
3 50
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( < Chain 𝐴 ) ) |