Metamath Proof Explorer


Theorem nfchnd

Description: Bound-variable hypothesis builder for chain collection constructor. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Hypotheses nfchnd.1 ( 𝜑 𝑥 < )
nfchnd.2 ( 𝜑 𝑥 𝐴 )
Assertion nfchnd ( 𝜑 𝑥 ( < Chain 𝐴 ) )

Proof

Step Hyp Ref Expression
1 nfchnd.1 ( 𝜑 𝑥 < )
2 nfchnd.2 ( 𝜑 𝑥 𝐴 )
3 df-chn ( < Chain 𝐴 ) = { 𝑧 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) }
4 df-rab { 𝑧 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) } = { 𝑧 ∣ ( 𝑧 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) ) }
5 nfv 𝑧 𝜑
6 df-word Word 𝐴 = { 𝑧 ∣ ∃ 𝑛 ∈ ℕ0 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 }
7 nfv 𝑛 𝜑
8 nfcvd ( 𝜑 𝑥0 )
9 df-f ( 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 ↔ ( 𝑧 Fn ( 0 ..^ 𝑛 ) ∧ ran 𝑧𝐴 ) )
10 df-fn ( 𝑧 Fn ( 0 ..^ 𝑛 ) ↔ ( Fun 𝑧 ∧ dom 𝑧 = ( 0 ..^ 𝑛 ) ) )
11 df-fun ( Fun 𝑧 ↔ ( Rel 𝑧 ∧ ( 𝑧 𝑧 ) ⊆ I ) )
12 df-rel ( Rel 𝑧𝑧 ⊆ ( V × V ) )
13 nfcv 𝑛 𝑧
14 nfcv 𝑛 ( V × V )
15 13 14 dfss3f ( 𝑧 ⊆ ( V × V ) ↔ ∀ 𝑛𝑧 𝑛 ∈ ( V × V ) )
16 nfcv 𝑥 𝑧
17 16 a1i ( 𝜑 𝑥 𝑧 )
18 nfcvd ( 𝜑 𝑥 ( V × V ) )
19 18 nfcrd ( 𝜑 → Ⅎ 𝑥 𝑛 ∈ ( V × V ) )
20 7 17 19 nfraldw ( 𝜑 → Ⅎ 𝑥𝑛𝑧 𝑛 ∈ ( V × V ) )
21 15 20 nfxfrd ( 𝜑 → Ⅎ 𝑥 𝑧 ⊆ ( V × V ) )
22 12 21 nfxfrd ( 𝜑 → Ⅎ 𝑥 Rel 𝑧 )
23 nfvd ( 𝜑 → Ⅎ 𝑥 ( 𝑧 𝑧 ) ⊆ I )
24 22 23 nfand ( 𝜑 → Ⅎ 𝑥 ( Rel 𝑧 ∧ ( 𝑧 𝑧 ) ⊆ I ) )
25 11 24 nfxfrd ( 𝜑 → Ⅎ 𝑥 Fun 𝑧 )
26 nfvd ( 𝜑 → Ⅎ 𝑥 dom 𝑧 = ( 0 ..^ 𝑛 ) )
27 25 26 nfand ( 𝜑 → Ⅎ 𝑥 ( Fun 𝑧 ∧ dom 𝑧 = ( 0 ..^ 𝑛 ) ) )
28 10 27 nfxfrd ( 𝜑 → Ⅎ 𝑥 𝑧 Fn ( 0 ..^ 𝑛 ) )
29 nfcv 𝑛 ran 𝑧
30 nfcv 𝑛 𝐴
31 29 30 dfss3f ( ran 𝑧𝐴 ↔ ∀ 𝑛 ∈ ran 𝑧 𝑛𝐴 )
32 nfcvd ( 𝜑 𝑥 ran 𝑧 )
33 2 nfcrd ( 𝜑 → Ⅎ 𝑥 𝑛𝐴 )
34 7 32 33 nfraldw ( 𝜑 → Ⅎ 𝑥𝑛 ∈ ran 𝑧 𝑛𝐴 )
35 31 34 nfxfrd ( 𝜑 → Ⅎ 𝑥 ran 𝑧𝐴 )
36 28 35 nfand ( 𝜑 → Ⅎ 𝑥 ( 𝑧 Fn ( 0 ..^ 𝑛 ) ∧ ran 𝑧𝐴 ) )
37 9 36 nfxfrd ( 𝜑 → Ⅎ 𝑥 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 )
38 7 8 37 nfrexdw ( 𝜑 → Ⅎ 𝑥𝑛 ∈ ℕ0 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 )
39 5 38 nfabdw ( 𝜑 𝑥 { 𝑧 ∣ ∃ 𝑛 ∈ ℕ0 𝑧 : ( 0 ..^ 𝑛 ) ⟶ 𝐴 } )
40 6 39 nfcxfrd ( 𝜑 𝑥 Word 𝐴 )
41 nfcr ( 𝑥 Word 𝐴 → Ⅎ 𝑥 𝑧 ∈ Word 𝐴 )
42 40 41 syl ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ Word 𝐴 )
43 nfcvd ( 𝜑 𝑥 ( dom 𝑧 ∖ { 0 } ) )
44 nfcvd ( 𝜑 𝑥 ( 𝑧 ‘ ( 𝑛 − 1 ) ) )
45 nfcvd ( 𝜑 𝑥 ( 𝑧𝑛 ) )
46 44 1 45 nfbrd ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) )
47 7 43 46 nfraldw ( 𝜑 → Ⅎ 𝑥𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) )
48 42 47 nfand ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) ) )
49 5 48 nfabdw ( 𝜑 𝑥 { 𝑧 ∣ ( 𝑧 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) ) } )
50 4 49 nfcxfrd ( 𝜑 𝑥 { 𝑧 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑧 ∖ { 0 } ) ( 𝑧 ‘ ( 𝑛 − 1 ) ) < ( 𝑧𝑛 ) } )
51 3 50 nfcxfrd ( 𝜑 𝑥 ( < Chain 𝐴 ) )