Metamath Proof Explorer


Theorem nfile

Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)

Ref Expression
Assertion nfile AVBW¬BFinAB

Proof

Step Hyp Ref Expression
1 hashxrcl AVA*
2 pnfge A*A+∞
3 1 2 syl AVA+∞
4 3 3ad2ant1 AVBW¬BFinA+∞
5 hashinf BW¬BFinB=+∞
6 5 3adant1 AVBW¬BFinB=+∞
7 4 6 breqtrrd AVBW¬BFinAB