Metamath Proof Explorer


Theorem nfimdetndef

Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018)

Ref Expression
Hypothesis nfimdetndef.d D=NmaDetR
Assertion nfimdetndef NFinD=

Proof

Step Hyp Ref Expression
1 nfimdetndef.d D=NmaDetR
2 eqid NMatR=NMatR
3 eqid BaseNMatR=BaseNMatR
4 eqid BaseSymGrpN=BaseSymGrpN
5 eqid ℤRHomR=ℤRHomR
6 eqid pmSgnN=pmSgnN
7 eqid R=R
8 eqid mulGrpR=mulGrpR
9 1 2 3 4 5 6 7 8 mdetfval D=mBaseNMatRRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxmx
10 df-nel NFin¬NFin
11 10 biimpi NFin¬NFin
12 11 intnanrd NFin¬NFinRV
13 matbas0 ¬NFinRVBaseNMatR=
14 12 13 syl NFinBaseNMatR=
15 14 mpteq1d NFinmBaseNMatRRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxmx=mRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxmx
16 mpt0 mRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxmx=
17 15 16 eqtrdi NFinmBaseNMatRRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxmx=
18 9 17 eqtrid NFinD=