Metamath Proof Explorer


Theorem nfriotad

Description: Deduction version of nfriota . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfriotadw when possible. (Contributed by NM, 18-Feb-2013) (Revised by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfriotad.1 yφ
nfriotad.2 φxψ
nfriotad.3 φ_xA
Assertion nfriotad φ_xιyA|ψ

Proof

Step Hyp Ref Expression
1 nfriotad.1 yφ
2 nfriotad.2 φxψ
3 nfriotad.3 φ_xA
4 df-riota ιyA|ψ=ιy|yAψ
5 nfnae y¬xx=y
6 1 5 nfan yφ¬xx=y
7 nfcvf ¬xx=y_xy
8 7 adantl φ¬xx=y_xy
9 3 adantr φ¬xx=y_xA
10 8 9 nfeld φ¬xx=yxyA
11 2 adantr φ¬xx=yxψ
12 10 11 nfand φ¬xx=yxyAψ
13 6 12 nfiotad φ¬xx=y_xιy|yAψ
14 13 ex φ¬xx=y_xιy|yAψ
15 nfiota1 _yιy|yAψ
16 eqidd xx=yιy|yAψ=ιy|yAψ
17 16 drnfc1 xx=y_xιy|yAψ_yιy|yAψ
18 15 17 mpbiri xx=y_xιy|yAψ
19 14 18 pm2.61d2 φ_xιy|yAψ
20 4 19 nfcxfrd φ_xιyA|ψ