Metamath Proof Explorer


Theorem ngplcan

Description: Cancel left addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngprcan.x X=BaseG
ngprcan.p +˙=+G
ngprcan.d D=distG
Assertion ngplcan GNrmGrpGAbelAXBXCXC+˙ADC+˙B=ADB

Proof

Step Hyp Ref Expression
1 ngprcan.x X=BaseG
2 ngprcan.p +˙=+G
3 ngprcan.d D=distG
4 simplr GNrmGrpGAbelAXBXCXGAbel
5 simpr3 GNrmGrpGAbelAXBXCXCX
6 simpr1 GNrmGrpGAbelAXBXCXAX
7 1 2 ablcom GAbelCXAXC+˙A=A+˙C
8 4 5 6 7 syl3anc GNrmGrpGAbelAXBXCXC+˙A=A+˙C
9 simpr2 GNrmGrpGAbelAXBXCXBX
10 1 2 ablcom GAbelCXBXC+˙B=B+˙C
11 4 5 9 10 syl3anc GNrmGrpGAbelAXBXCXC+˙B=B+˙C
12 8 11 oveq12d GNrmGrpGAbelAXBXCXC+˙ADC+˙B=A+˙CDB+˙C
13 1 2 3 ngprcan GNrmGrpAXBXCXA+˙CDB+˙C=ADB
14 13 adantlr GNrmGrpGAbelAXBXCXA+˙CDB+˙C=ADB
15 12 14 eqtrd GNrmGrpGAbelAXBXCXC+˙ADC+˙B=ADB