Metamath Proof Explorer


Theorem ngprcan

Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngprcan.x X=BaseG
ngprcan.p +˙=+G
ngprcan.d D=distG
Assertion ngprcan GNrmGrpAXBXCXA+˙CDB+˙C=ADB

Proof

Step Hyp Ref Expression
1 ngprcan.x X=BaseG
2 ngprcan.p +˙=+G
3 ngprcan.d D=distG
4 ngpgrp GNrmGrpGGrp
5 eqid -G=-G
6 1 2 5 grppnpcan2 GGrpAXBXCXA+˙C-GB+˙C=A-GB
7 4 6 sylan GNrmGrpAXBXCXA+˙C-GB+˙C=A-GB
8 7 fveq2d GNrmGrpAXBXCXnormGA+˙C-GB+˙C=normGA-GB
9 simpl GNrmGrpAXBXCXGNrmGrp
10 4 adantr GNrmGrpAXBXCXGGrp
11 simpr1 GNrmGrpAXBXCXAX
12 simpr3 GNrmGrpAXBXCXCX
13 1 2 grpcl GGrpAXCXA+˙CX
14 10 11 12 13 syl3anc GNrmGrpAXBXCXA+˙CX
15 simpr2 GNrmGrpAXBXCXBX
16 1 2 grpcl GGrpBXCXB+˙CX
17 10 15 12 16 syl3anc GNrmGrpAXBXCXB+˙CX
18 eqid normG=normG
19 18 1 5 3 ngpds GNrmGrpA+˙CXB+˙CXA+˙CDB+˙C=normGA+˙C-GB+˙C
20 9 14 17 19 syl3anc GNrmGrpAXBXCXA+˙CDB+˙C=normGA+˙C-GB+˙C
21 18 1 5 3 ngpds GNrmGrpAXBXADB=normGA-GB
22 9 11 15 21 syl3anc GNrmGrpAXBXCXADB=normGA-GB
23 8 20 22 3eqtr4d GNrmGrpAXBXCXA+˙CDB+˙C=ADB