Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nmcopex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |
|
2 | fveq2 | |
|
3 | 2 | eleq1d | |
4 | idlnop | |
|
5 | idcnop | |
|
6 | elin | |
|
7 | 4 5 6 | mpbir2an | |
8 | 7 | elimel | |
9 | elin | |
|
10 | 8 9 | mpbi | |
11 | 10 | simpli | |
12 | 10 | simpri | |
13 | 11 12 | nmcopexi | |
14 | 3 13 | dedth | |
15 | 1 14 | sylbir | |