Metamath Proof Explorer


Theorem nmcopex

Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcopex TLinOpTContOpnormopT

Proof

Step Hyp Ref Expression
1 elin TLinOpContOpTLinOpTContOp
2 fveq2 T=ifTLinOpContOpTInormopT=normopifTLinOpContOpTI
3 2 eleq1d T=ifTLinOpContOpTInormopTnormopifTLinOpContOpTI
4 idlnop ILinOp
5 idcnop IContOp
6 elin ILinOpContOpILinOpIContOp
7 4 5 6 mpbir2an ILinOpContOp
8 7 elimel ifTLinOpContOpTILinOpContOp
9 elin ifTLinOpContOpTILinOpContOpifTLinOpContOpTILinOpifTLinOpContOpTIContOp
10 8 9 mpbi ifTLinOpContOpTILinOpifTLinOpContOpTIContOp
11 10 simpli ifTLinOpContOpTILinOp
12 10 simpri ifTLinOpContOpTIContOp
13 11 12 nmcopexi normopifTLinOpContOpTI
14 3 13 dedth TLinOpContOpnormopT
15 1 14 sylbir TLinOpTContOpnormopT