Metamath Proof Explorer


Theorem nmcopexi

Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 5-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmcopex.1 TLinOp
nmcopex.2 TContOp
Assertion nmcopexi normopT

Proof

Step Hyp Ref Expression
1 nmcopex.1 TLinOp
2 nmcopex.2 TContOp
3 ax-hv0cl 0
4 1rp 1+
5 cnopc TContOp01+y+znormz-0<ynormTz-T0<1
6 2 3 4 5 mp3an y+znormz-0<ynormTz-T0<1
7 hvsub0 zz-0=z
8 7 fveq2d znormz-0=normz
9 8 breq1d znormz-0<ynormz<y
10 1 lnop0i T0=0
11 10 oveq2i Tz-T0=Tz-0
12 1 lnopfi T:
13 12 ffvelcdmi zTz
14 hvsub0 TzTz-0=Tz
15 13 14 syl zTz-0=Tz
16 11 15 eqtrid zTz-T0=Tz
17 16 fveq2d znormTz-T0=normTz
18 17 breq1d znormTz-T0<1normTz<1
19 9 18 imbi12d znormz-0<ynormTz-T0<1normz<ynormTz<1
20 19 ralbiia znormz-0<ynormTz-T0<1znormz<ynormTz<1
21 20 rexbii y+znormz-0<ynormTz-T0<1y+znormz<ynormTz<1
22 6 21 mpbi y+znormz<ynormTz<1
23 nmopval T:normopT=supm|xnormx1m=normTx*<
24 12 23 ax-mp normopT=supm|xnormx1m=normTx*<
25 12 ffvelcdmi xTx
26 normcl TxnormTx
27 25 26 syl xnormTx
28 10 fveq2i normT0=norm0
29 norm0 norm0=0
30 28 29 eqtri normT0=0
31 rpcn y2+y2
32 1 lnopmuli y2xTy2x=y2Tx
33 31 32 sylan y2+xTy2x=y2Tx
34 33 fveq2d y2+xnormTy2x=normy2Tx
35 norm-iii y2Txnormy2Tx=y2normTx
36 31 25 35 syl2an y2+xnormy2Tx=y2normTx
37 rpre y2+y2
38 rpge0 y2+0y2
39 37 38 absidd y2+y2=y2
40 39 adantr y2+xy2=y2
41 40 oveq1d y2+xy2normTx=y2normTx
42 34 36 41 3eqtrrd y2+xy2normTx=normTy2x
43 22 24 27 30 42 nmcexi normopT