Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 5-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmcopex.1 | |
|
nmcopex.2 | |
||
Assertion | nmcopexi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcopex.1 | |
|
2 | nmcopex.2 | |
|
3 | ax-hv0cl | |
|
4 | 1rp | |
|
5 | cnopc | |
|
6 | 2 3 4 5 | mp3an | |
7 | hvsub0 | |
|
8 | 7 | fveq2d | |
9 | 8 | breq1d | |
10 | 1 | lnop0i | |
11 | 10 | oveq2i | |
12 | 1 | lnopfi | |
13 | 12 | ffvelcdmi | |
14 | hvsub0 | |
|
15 | 13 14 | syl | |
16 | 11 15 | eqtrid | |
17 | 16 | fveq2d | |
18 | 17 | breq1d | |
19 | 9 18 | imbi12d | |
20 | 19 | ralbiia | |
21 | 20 | rexbii | |
22 | 6 21 | mpbi | |
23 | nmopval | |
|
24 | 12 23 | ax-mp | |
25 | 12 | ffvelcdmi | |
26 | normcl | |
|
27 | 25 26 | syl | |
28 | 10 | fveq2i | |
29 | norm0 | |
|
30 | 28 29 | eqtri | |
31 | rpcn | |
|
32 | 1 | lnopmuli | |
33 | 31 32 | sylan | |
34 | 33 | fveq2d | |
35 | norm-iii | |
|
36 | 31 25 35 | syl2an | |
37 | rpre | |
|
38 | rpge0 | |
|
39 | 37 38 | absidd | |
40 | 39 | adantr | |
41 | 40 | oveq1d | |
42 | 34 36 41 | 3eqtrrd | |
43 | 22 24 27 30 42 | nmcexi | |