Metamath Proof Explorer


Theorem nmcopexi

Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 5-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmcopex.1 T LinOp
nmcopex.2 T ContOp
Assertion nmcopexi norm op T

Proof

Step Hyp Ref Expression
1 nmcopex.1 T LinOp
2 nmcopex.2 T ContOp
3 ax-hv0cl 0
4 1rp 1 +
5 cnopc T ContOp 0 1 + y + z norm z - 0 < y norm T z - T 0 < 1
6 2 3 4 5 mp3an y + z norm z - 0 < y norm T z - T 0 < 1
7 hvsub0 z z - 0 = z
8 7 fveq2d z norm z - 0 = norm z
9 8 breq1d z norm z - 0 < y norm z < y
10 1 lnop0i T 0 = 0
11 10 oveq2i T z - T 0 = T z - 0
12 1 lnopfi T :
13 12 ffvelrni z T z
14 hvsub0 T z T z - 0 = T z
15 13 14 syl z T z - 0 = T z
16 11 15 eqtrid z T z - T 0 = T z
17 16 fveq2d z norm T z - T 0 = norm T z
18 17 breq1d z norm T z - T 0 < 1 norm T z < 1
19 9 18 imbi12d z norm z - 0 < y norm T z - T 0 < 1 norm z < y norm T z < 1
20 19 ralbiia z norm z - 0 < y norm T z - T 0 < 1 z norm z < y norm T z < 1
21 20 rexbii y + z norm z - 0 < y norm T z - T 0 < 1 y + z norm z < y norm T z < 1
22 6 21 mpbi y + z norm z < y norm T z < 1
23 nmopval T : norm op T = sup m | x norm x 1 m = norm T x * <
24 12 23 ax-mp norm op T = sup m | x norm x 1 m = norm T x * <
25 12 ffvelrni x T x
26 normcl T x norm T x
27 25 26 syl x norm T x
28 10 fveq2i norm T 0 = norm 0
29 norm0 norm 0 = 0
30 28 29 eqtri norm T 0 = 0
31 rpcn y 2 + y 2
32 1 lnopmuli y 2 x T y 2 x = y 2 T x
33 31 32 sylan y 2 + x T y 2 x = y 2 T x
34 33 fveq2d y 2 + x norm T y 2 x = norm y 2 T x
35 norm-iii y 2 T x norm y 2 T x = y 2 norm T x
36 31 25 35 syl2an y 2 + x norm y 2 T x = y 2 norm T x
37 rpre y 2 + y 2
38 rpge0 y 2 + 0 y 2
39 37 38 absidd y 2 + y 2 = y 2
40 39 adantr y 2 + x y 2 = y 2
41 40 oveq1d y 2 + x y 2 norm T x = y 2 norm T x
42 34 36 41 3eqtrrd y 2 + x y 2 norm T x = norm T y 2 x
43 22 24 27 30 42 nmcexi norm op T