Metamath Proof Explorer


Theorem nmfval0

Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 proved from this theorem and grpidcl ) or more generally monoids (see mndidcl ), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015) Extract this result from the proof of nmfval2 . (Revised by BJ, 27-Aug-2024)

Ref Expression
Hypotheses nmfval0.n N=normW
nmfval0.x X=BaseW
nmfval0.z 0˙=0W
nmfval0.d D=distW
nmfval0.e E=DX×X
Assertion nmfval0 0˙XN=xXxE0˙

Proof

Step Hyp Ref Expression
1 nmfval0.n N=normW
2 nmfval0.x X=BaseW
3 nmfval0.z 0˙=0W
4 nmfval0.d D=distW
5 nmfval0.e E=DX×X
6 1 2 3 4 nmfval N=xXxD0˙
7 5 oveqi xE0˙=xDX×X0˙
8 ovres xX0˙XxDX×X0˙=xD0˙
9 8 ancoms 0˙XxXxDX×X0˙=xD0˙
10 7 9 eqtr2id 0˙XxXxD0˙=xE0˙
11 10 mpteq2dva 0˙XxXxD0˙=xXxE0˙
12 6 11 eqtrid 0˙XN=xXxE0˙