Metamath Proof Explorer


Theorem nminv

Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nminv.i I=invgG
Assertion nminv GNrmGrpAXNIA=NA

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nminv.i I=invgG
4 ngpgrp GNrmGrpGGrp
5 4 adantr GNrmGrpAXGGrp
6 eqid 0G=0G
7 1 6 grpidcl GGrp0GX
8 5 7 syl GNrmGrpAX0GX
9 eqid -G=-G
10 eqid distG=distG
11 2 1 9 10 ngpdsr GNrmGrpAX0GXAdistG0G=N0G-GA
12 8 11 mpd3an3 GNrmGrpAXAdistG0G=N0G-GA
13 2 1 6 10 nmval AXNA=AdistG0G
14 13 adantl GNrmGrpAXNA=AdistG0G
15 1 9 3 6 grpinvval2 GGrpAXIA=0G-GA
16 4 15 sylan GNrmGrpAXIA=0G-GA
17 16 fveq2d GNrmGrpAXNIA=N0G-GA
18 12 14 17 3eqtr4rd GNrmGrpAXNIA=NA