Metamath Proof Explorer


Theorem nmopxr

Description: The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopxr T:normopT*

Proof

Step Hyp Ref Expression
1 nmopval T:normopT=supx|ynormy1x=normTy*<
2 nmopsetretHIL T:x|ynormy1x=normTy
3 ressxr *
4 2 3 sstrdi T:x|ynormy1x=normTy*
5 supxrcl x|ynormy1x=normTy*supx|ynormy1x=normTy*<*
6 4 5 syl T:supx|ynormy1x=normTy*<*
7 1 6 eqeltrd T:normopT*