Metamath Proof Explorer


Theorem nmoreltpnf

Description: The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1 X=BaseSetU
nmoxr.2 Y=BaseSetW
nmoxr.3 N=UnormOpOLDW
Assertion nmoreltpnf UNrmCVecWNrmCVecT:XYNTNT<+∞

Proof

Step Hyp Ref Expression
1 nmoxr.1 X=BaseSetU
2 nmoxr.2 Y=BaseSetW
3 nmoxr.3 N=UnormOpOLDW
4 1 2 3 nmorepnf UNrmCVecWNrmCVecT:XYNTNT+∞
5 1 2 3 nmoxr UNrmCVecWNrmCVecT:XYNT*
6 nltpnft NT*NT=+∞¬NT<+∞
7 5 6 syl UNrmCVecWNrmCVecT:XYNT=+∞¬NT<+∞
8 7 necon2abid UNrmCVecWNrmCVecT:XYNT<+∞NT+∞
9 4 8 bitr4d UNrmCVecWNrmCVecT:XYNTNT<+∞