Metamath Proof Explorer


Theorem nmval2

Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nmfval2.n N=normW
nmfval2.x X=BaseW
nmfval2.z 0˙=0W
nmfval2.d D=distW
nmfval2.e E=DX×X
Assertion nmval2 WGrpAXNA=AE0˙

Proof

Step Hyp Ref Expression
1 nmfval2.n N=normW
2 nmfval2.x X=BaseW
3 nmfval2.z 0˙=0W
4 nmfval2.d D=distW
5 nmfval2.e E=DX×X
6 1 2 3 4 nmval AXNA=AD0˙
7 6 adantl WGrpAXNA=AD0˙
8 5 oveqi AE0˙=ADX×X0˙
9 id AXAX
10 2 3 grpidcl WGrp0˙X
11 ovres AX0˙XADX×X0˙=AD0˙
12 9 10 11 syl2anr WGrpAXADX×X0˙=AD0˙
13 8 12 eqtr2id WGrpAXAD0˙=AE0˙
14 7 13 eqtrd WGrpAXNA=AE0˙