Metamath Proof Explorer


Theorem nmvs

Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses isnlm.v V=BaseW
isnlm.n N=normW
isnlm.s ·˙=W
isnlm.f F=ScalarW
isnlm.k K=BaseF
isnlm.a A=normF
Assertion nmvs WNrmModXKYVNX·˙Y=AXNY

Proof

Step Hyp Ref Expression
1 isnlm.v V=BaseW
2 isnlm.n N=normW
3 isnlm.s ·˙=W
4 isnlm.f F=ScalarW
5 isnlm.k K=BaseF
6 isnlm.a A=normF
7 1 2 3 4 5 6 isnlm WNrmModWNrmGrpWLModFNrmRingxKyVNx·˙y=AxNy
8 7 simprbi WNrmModxKyVNx·˙y=AxNy
9 fvoveq1 x=XNx·˙y=NX·˙y
10 fveq2 x=XAx=AX
11 10 oveq1d x=XAxNy=AXNy
12 9 11 eqeq12d x=XNx·˙y=AxNyNX·˙y=AXNy
13 oveq2 y=YX·˙y=X·˙Y
14 13 fveq2d y=YNX·˙y=NX·˙Y
15 fveq2 y=YNy=NY
16 15 oveq2d y=YAXNy=AXNY
17 14 16 eqeq12d y=YNX·˙y=AXNyNX·˙Y=AXNY
18 12 17 rspc2v XKYVxKyVNx·˙y=AxNyNX·˙Y=AXNY
19 8 18 syl5com WNrmModXKYVNX·˙Y=AXNY
20 19 3impib WNrmModXKYVNX·˙Y=AXNY