Metamath Proof Explorer


Theorem nn0e

Description: An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020)

Ref Expression
Assertion nn0e N0NEvenN20

Proof

Step Hyp Ref Expression
1 nn0ge0 N00N
2 nn0re N0N
3 2re 2
4 3 a1i N02
5 2pos 0<2
6 5 a1i N00<2
7 ge0div N20<20N0N2
8 2 4 6 7 syl3anc N00N0N2
9 1 8 mpbid N00N2
10 evendiv2z NEvenN2
11 9 10 anim12ci N0NEvenN20N2
12 elnn0z N20N20N2
13 11 12 sylibr N0NEvenN20