Metamath Proof Explorer


Theorem nn0ind-raph

Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Hypotheses nn0ind-raph.1 x=0φψ
nn0ind-raph.2 x=yφχ
nn0ind-raph.3 x=y+1φθ
nn0ind-raph.4 x=Aφτ
nn0ind-raph.5 ψ
nn0ind-raph.6 y0χθ
Assertion nn0ind-raph A0τ

Proof

Step Hyp Ref Expression
1 nn0ind-raph.1 x=0φψ
2 nn0ind-raph.2 x=yφχ
3 nn0ind-raph.3 x=y+1φθ
4 nn0ind-raph.4 x=Aφτ
5 nn0ind-raph.5 ψ
6 nn0ind-raph.6 y0χθ
7 elnn0 A0AA=0
8 dfsbcq2 z=1zxφ[˙1/x]˙φ
9 nfv xχ
10 9 2 sbhypf z=yzxφχ
11 nfv xθ
12 11 3 sbhypf z=y+1zxφθ
13 nfv xτ
14 13 4 sbhypf z=Azxφτ
15 nfsbc1v x[˙1/x]˙φ
16 1ex 1V
17 c0ex 0V
18 0nn0 00
19 eleq1a 00y=0y0
20 18 19 ax-mp y=0y0
21 5 1 mpbiri x=0φ
22 eqeq2 y=0x=yx=0
23 22 2 syl6bir y=0x=0φχ
24 23 pm5.74d y=0x=0φx=0χ
25 21 24 mpbii y=0x=0χ
26 25 com12 x=0y=0χ
27 17 26 vtocle y=0χ
28 20 27 6 sylc y=0θ
29 28 adantr y=0x=1θ
30 oveq1 y=0y+1=0+1
31 0p1e1 0+1=1
32 30 31 eqtrdi y=0y+1=1
33 32 eqeq2d y=0x=y+1x=1
34 33 3 syl6bir y=0x=1φθ
35 34 imp y=0x=1φθ
36 29 35 mpbird y=0x=1φ
37 36 ex y=0x=1φ
38 17 37 vtocle x=1φ
39 sbceq1a x=1φ[˙1/x]˙φ
40 38 39 mpbid x=1[˙1/x]˙φ
41 15 16 40 vtoclef [˙1/x]˙φ
42 nnnn0 yy0
43 42 6 syl yχθ
44 8 10 12 14 41 43 nnind Aτ
45 nfv x0=Aτ
46 eqeq1 x=0x=A0=A
47 1 bicomd x=0ψφ
48 47 4 sylan9bb x=0x=Aψτ
49 5 48 mpbii x=0x=Aτ
50 49 ex x=0x=Aτ
51 46 50 sylbird x=00=Aτ
52 45 17 51 vtoclef 0=Aτ
53 52 eqcoms A=0τ
54 44 53 jaoi AA=0τ
55 7 54 sylbi A0τ