Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nn0ind-raph.1 | |
|
nn0ind-raph.2 | |
||
nn0ind-raph.3 | |
||
nn0ind-raph.4 | |
||
nn0ind-raph.5 | |
||
nn0ind-raph.6 | |
||
Assertion | nn0ind-raph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ind-raph.1 | |
|
2 | nn0ind-raph.2 | |
|
3 | nn0ind-raph.3 | |
|
4 | nn0ind-raph.4 | |
|
5 | nn0ind-raph.5 | |
|
6 | nn0ind-raph.6 | |
|
7 | elnn0 | |
|
8 | dfsbcq2 | |
|
9 | nfv | |
|
10 | 9 2 | sbhypf | |
11 | nfv | |
|
12 | 11 3 | sbhypf | |
13 | nfv | |
|
14 | 13 4 | sbhypf | |
15 | nfsbc1v | |
|
16 | 1ex | |
|
17 | c0ex | |
|
18 | 0nn0 | |
|
19 | eleq1a | |
|
20 | 18 19 | ax-mp | |
21 | 5 1 | mpbiri | |
22 | eqeq2 | |
|
23 | 22 2 | syl6bir | |
24 | 23 | pm5.74d | |
25 | 21 24 | mpbii | |
26 | 25 | com12 | |
27 | 17 26 | vtocle | |
28 | 20 27 6 | sylc | |
29 | 28 | adantr | |
30 | oveq1 | |
|
31 | 0p1e1 | |
|
32 | 30 31 | eqtrdi | |
33 | 32 | eqeq2d | |
34 | 33 3 | syl6bir | |
35 | 34 | imp | |
36 | 29 35 | mpbird | |
37 | 36 | ex | |
38 | 17 37 | vtocle | |
39 | sbceq1a | |
|
40 | 38 39 | mpbid | |
41 | 15 16 40 | vtoclef | |
42 | nnnn0 | |
|
43 | 42 6 | syl | |
44 | 8 10 12 14 41 43 | nnind | |
45 | nfv | |
|
46 | eqeq1 | |
|
47 | 1 | bicomd | |
48 | 47 4 | sylan9bb | |
49 | 5 48 | mpbii | |
50 | 49 | ex | |
51 | 46 50 | sylbird | |
52 | 45 17 51 | vtoclef | |
53 | 52 | eqcoms | |
54 | 44 53 | jaoi | |
55 | 7 54 | sylbi | |