Metamath Proof Explorer


Theorem nn0n0n1ge2b

Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018)

Ref Expression
Assertion nn0n0n1ge2b N0N0N12N

Proof

Step Hyp Ref Expression
1 nn0n0n1ge2 N0N0N12N
2 1 3expib N0N0N12N
3 ianor ¬N0N1¬N0¬N1
4 nne ¬N0N=0
5 nne ¬N1N=1
6 4 5 orbi12i ¬N0¬N1N=0N=1
7 3 6 bitri ¬N0N1N=0N=1
8 2pos 0<2
9 breq1 N=0N<20<2
10 8 9 mpbiri N=0N<2
11 10 a1d N=0N0N<2
12 1lt2 1<2
13 breq1 N=1N<21<2
14 12 13 mpbiri N=1N<2
15 14 a1d N=1N0N<2
16 11 15 jaoi N=0N=1N0N<2
17 16 impcom N0N=0N=1N<2
18 nn0re N0N
19 2re 2
20 18 19 jctir N0N2
21 20 adantr N0N=0N=1N2
22 ltnle N2N<2¬2N
23 21 22 syl N0N=0N=1N<2¬2N
24 17 23 mpbid N0N=0N=1¬2N
25 24 ex N0N=0N=1¬2N
26 7 25 biimtrid N0¬N0N1¬2N
27 2 26 impcon4bid N0N0N12N