Metamath Proof Explorer


Theorem nnaddm1cl

Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnaddm1cl ABA+B-1

Proof

Step Hyp Ref Expression
1 nncn AA
2 nncn BB
3 ax-1cn 1
4 addsub AB1A+B-1=A-1+B
5 3 4 mp3an3 ABA+B-1=A-1+B
6 1 2 5 syl2an ABA+B-1=A-1+B
7 nnm1nn0 AA10
8 nn0nnaddcl A10BA-1+B
9 7 8 sylan ABA-1+B
10 6 9 eqeltrd ABA+B-1