Metamath Proof Explorer


Theorem nnaord

Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaord AωBωCωABC+𝑜AC+𝑜B

Proof

Step Hyp Ref Expression
1 nnaordi BωCωABC+𝑜AC+𝑜B
2 1 3adant1 AωBωCωABC+𝑜AC+𝑜B
3 oveq2 A=BC+𝑜A=C+𝑜B
4 3 a1i AωBωCωA=BC+𝑜A=C+𝑜B
5 nnaordi AωCωBAC+𝑜BC+𝑜A
6 5 3adant2 AωBωCωBAC+𝑜BC+𝑜A
7 4 6 orim12d AωBωCωA=BBAC+𝑜A=C+𝑜BC+𝑜BC+𝑜A
8 7 con3d AωBωCω¬C+𝑜A=C+𝑜BC+𝑜BC+𝑜A¬A=BBA
9 df-3an AωBωCωAωBωCω
10 ancom AωBωCωCωAωBω
11 anandi CωAωBωCωAωCωBω
12 9 10 11 3bitri AωBωCωCωAωCωBω
13 nnacl CωAωC+𝑜Aω
14 nnord C+𝑜AωOrdC+𝑜A
15 13 14 syl CωAωOrdC+𝑜A
16 nnacl CωBωC+𝑜Bω
17 nnord C+𝑜BωOrdC+𝑜B
18 16 17 syl CωBωOrdC+𝑜B
19 15 18 anim12i CωAωCωBωOrdC+𝑜AOrdC+𝑜B
20 12 19 sylbi AωBωCωOrdC+𝑜AOrdC+𝑜B
21 ordtri2 OrdC+𝑜AOrdC+𝑜BC+𝑜AC+𝑜B¬C+𝑜A=C+𝑜BC+𝑜BC+𝑜A
22 20 21 syl AωBωCωC+𝑜AC+𝑜B¬C+𝑜A=C+𝑜BC+𝑜BC+𝑜A
23 nnord AωOrdA
24 nnord BωOrdB
25 23 24 anim12i AωBωOrdAOrdB
26 25 3adant3 AωBωCωOrdAOrdB
27 ordtri2 OrdAOrdBAB¬A=BBA
28 26 27 syl AωBωCωAB¬A=BBA
29 8 22 28 3imtr4d AωBωCωC+𝑜AC+𝑜BAB
30 2 29 impbid AωBωCωABC+𝑜AC+𝑜B