Metamath Proof Explorer


Theorem nnmulcl

Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997) Remove dependency on ax-mulcom and ax-mulass . (Revised by Steven Nguyen, 24-Sep-2022)

Ref Expression
Assertion nnmulcl ABAB

Proof

Step Hyp Ref Expression
1 oveq2 x=1Ax=A1
2 1 eleq1d x=1AxA1
3 2 imbi2d x=1AAxAA1
4 oveq2 x=yAx=Ay
5 4 eleq1d x=yAxAy
6 5 imbi2d x=yAAxAAy
7 oveq2 x=y+1Ax=Ay+1
8 7 eleq1d x=y+1AxAy+1
9 8 imbi2d x=y+1AAxAAy+1
10 oveq2 x=BAx=AB
11 10 eleq1d x=BAxAB
12 11 imbi2d x=BAAxAAB
13 nnre AA
14 ax-1rid AA1=A
15 14 eleq1d AA1A
16 15 biimprd AAA1
17 13 16 mpcom AA1
18 nnaddcl AyAAy+A
19 18 ancoms AAyAy+A
20 nncn AA
21 nncn yy
22 ax-1cn 1
23 adddi Ay1Ay+1=Ay+A1
24 22 23 mp3an3 AyAy+1=Ay+A1
25 20 21 24 syl2an AyAy+1=Ay+A1
26 13 14 syl AA1=A
27 26 adantr AyA1=A
28 27 oveq2d AyAy+A1=Ay+A
29 25 28 eqtrd AyAy+1=Ay+A
30 29 eleq1d AyAy+1Ay+A
31 19 30 imbitrrid AyAAyAy+1
32 31 exp4b AyAAyAy+1
33 32 pm2.43b yAAyAy+1
34 33 a2d yAAyAAy+1
35 3 6 9 12 17 34 nnind BAAB
36 35 impcom ABAB