Metamath Proof Explorer


Theorem norm-iii-i

Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm-iii.1 A
norm-iii.2 B
Assertion norm-iii-i normAB=AnormB

Proof

Step Hyp Ref Expression
1 norm-iii.1 A
2 norm-iii.2 B
3 1 1 2 2 his35i ABihAB=AABihB
4 3 fveq2i ABihAB=AABihB
5 1 cjmulrcli AA
6 hiidrcl BBihB
7 2 6 ax-mp BihB
8 1 cjmulge0i 0AA
9 hiidge0 B0BihB
10 2 9 ax-mp 0BihB
11 5 7 8 10 sqrtmulii AABihB=AABihB
12 4 11 eqtri ABihAB=AABihB
13 1 2 hvmulcli AB
14 normval ABnormAB=ABihAB
15 13 14 ax-mp normAB=ABihAB
16 absval AA=AA
17 1 16 ax-mp A=AA
18 normval BnormB=BihB
19 2 18 ax-mp normB=BihB
20 17 19 oveq12i AnormB=AABihB
21 12 15 20 3eqtr4i normAB=AnormB