Metamath Proof Explorer


Theorem noror

Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noror φψφψφψ

Proof

Step Hyp Ref Expression
1 df-nor φψ¬φψ
2 1 con2bii φψ¬φψ
3 nornot ¬φψφψφψ
4 2 3 bitri φψφψφψ