Metamath Proof Explorer


Theorem nqerrel

Description: Any member of ( N. X. N. ) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion nqerrel A𝑵×𝑵A~𝑸/𝑸A

Proof

Step Hyp Ref Expression
1 eqid /𝑸A=/𝑸A
2 nqerf /𝑸:𝑵×𝑵𝑸
3 ffn /𝑸:𝑵×𝑵𝑸/𝑸Fn𝑵×𝑵
4 2 3 ax-mp /𝑸Fn𝑵×𝑵
5 fnbrfvb /𝑸Fn𝑵×𝑵A𝑵×𝑵/𝑸A=/𝑸AA/𝑸/𝑸A
6 4 5 mpan A𝑵×𝑵/𝑸A=/𝑸AA/𝑸/𝑸A
7 1 6 mpbii A𝑵×𝑵A/𝑸/𝑸A
8 df-erq /𝑸=~𝑸𝑵×𝑵×𝑸
9 inss1 ~𝑸𝑵×𝑵×𝑸~𝑸
10 8 9 eqsstri /𝑸~𝑸
11 10 ssbri A/𝑸/𝑸AA~𝑸/𝑸A
12 7 11 syl A𝑵×𝑵A~𝑸/𝑸A